

Dissemination level: Public

Output type: Deliverable 2, WP 1, D1.2

Date: 13.10.2025;

Deliverable 1.2: Closing event

Authors:

Assoc. prof. Dr. Galia Marinova

Work Package:1	Management
Туре:	R-Document, Report
Dissemination Level:	PU-Public
Approval Status:	Submitted
Version:	v1
Number of pages:	16 + Annex
Filename:	Deliverable_1_2 _ClosingEvent.pdf
Delivery Date:	13/10/2025
Keywords:	Internet of Things, Green Transition, Digital Twin, Western Balkan, HEI
Abstract:	This report presents the information about the Closing event for the IoT-ECO project held in the Technical University of Sofia, Bulgaria in the period 24 to 28 September 2025. The report presents the Preliminary organization and Invitation, the agenda, the attendees, the photos and dissemination materials, the training package and presentations, the minutes of the discussion and decisions and the Quality report for the Closing event. The Closing event was attended by 70 participants – 41 teachers/staff and 29 students, 35 female and 35 male. Only 6 attendees were online, the others were on-site. The external quality auditor attended the event and made recommendations to the consortium.
Contact Persons:	Assoc. Prof. Dr. Galia Marinova

Table of acronyms or abbreviations

Acronym	Illustration		
IoT	Internet of Things		
HEI	Higher Education Institution		

List of Tables

Table I. Teachers/Staff attendees per Partner and per gender

Table II. Students-attendees per Partner and per gender

List of Figures

Figure 1. IoT-ECO badges for the Closing event – blue for teachers and green for students

Figure 2. Poster for the Closing event of the IoT-ECO project in TU-Sofia

Figure 3. Results for the attendees satisfaction

Figure 4. Results for the agreement of the attendees with different statements

Table of Contents

	Page
1. Introduction	5
2. Preliminary organization and Invitation for the Closing event	5
3. Agenda of the Closing event	5
4. Attendees	8
5. Photos and dissemination materials	9
6. Training package and presentations	11
6.1. Summary of the presentation of the coordinator	11
6.2. Training materials on the newly developed virtual models	12
7. Minutes of the discussion and decisions	12
8. Quality report for the Closing event	13
9. Conclusion	16
ANNEX	

1. Introduction

The Closing event is the last event planned in the IoT-ECO project. It was realized in the period 24 to 28 September 2025 in Technical University of Sofia, Bulgaria – the coordinator's HEI. It was located in the Aula 701 of the Building 7 of the Technical University of Sofia. At the request of the coordinator the Project officer allowed the Closing event to be realized in the end of September 2025 instead of August 2025.

The report presents the preliminary organization and Invitation, the agenda, the attendees, the photos and dissemination materials, the training package and presentations, the minutes of the discussion and decisions and the quality report for the Closing event.

2. Preliminary organization and Invitation for the Closing event

The 17th of July 2025, at the IoT-ECO Summer School in UBT, Pristina, Kosovo, a Coordination meeting was organized for the preliminary organization of the Closing event. The dates of the Closing event were decided, and each partner was asked to send at least 3 teachers/staff, the partners from Albania, Kosovo and Montenegro were invited to nominate at least 5 students to attend the training at the Closing event. It was decided to invite the External quality auditor of the IoT-ECO project at the Closing event. The general agenda of the Closing event was planned. The coordinator, the head of the Quality Board and the leader of the Dissemination package were invited to prepare reports. The teachers were invited to propose presentations and training materials. Students were invited to present projects related to the topics and new pilot courses of the IoT-ECO project.

The coordinator prepared an invitation for the Closing event and distributed it to the partners by mail. The Partners' contact persons nominated the teachers/staff and students to attend the closing event and sent the lists to the coordinator. Priority was given to students who prepared projects connected to the IoT-ECO project topics.

3. Agenda of the Closing event

The agenda of the Closing event follows.

AGENDA

Closing Event of the project
101083018 - IoT-ECO, Erasmus-LS, ERASMUS-EDU-2022-CBHE,
ERASMUS-EDU-2022-CBHE-STRAND-2

in Technical University of Sofia, Dates: 24-28 September 2025 Location: Aula of the Building 7 in TU-Sofia

Arrival and Accommodation 18:00 Registration and Welcome meeting

Thursday, 25 September 2025

8:30-9:00 Registration and Coffee

9:00-9:30 Opening. Welcome address from the Rector and officials in TU-Sofia

9:30-10:00 Presentation of achievements of the project IoT-ECO

Assoc. Prof. Dr. Galia Marinova – project coordinator

- 10:00-11:00 Virtual models developed in the framework of the IoT-ECO project
- 10:00-10:20 Tutorial: Part 1: Constructing a virtual prototype in a port environment with Microsoft Azure for Durres Port Authority. Part 2: Constructing virtual prototypes in a port environment with ADOBE AEREO

 Manjola Zeneli UAMD, Albania
- 10:20-10:40 Implementation of the IoT hub and Digital Twins at the UBT smart and self-sustainable city, Besnik Qehaja UBT, Kosovo
- 10:40-11:00 IoT-ECO model of UoM: IoT Layer: Valve Control System Janko Jovanovic UoM, montenegro
- 11:00-11:20 Coffee Break
- 11:20-12:00 Towards an IoT Eco Futures: Sustainable Optical Communication and Hybrid Networks Erich Leitgeb and Pasha Bekhrad TU-Graz , Austria
- 12:00-12:40 Distributed signal processing and learning for IoT:Main concepts and recent developments

Kostas Berberidis and Christos Mavrokefalidis, University of Patras, Greece

- 12:40-14:00 Lunch
- 14:00 –14:40 The applications of IoT in industry, academy and more Frida Gjermeni, University "Aleksander Moisiu", Durres, Albania
- 14:40 15:20 Cloud and IoT integration.

Enida Sheme, Eduart Torba, Polytechnic University of Tirana, Albania

15:20 – 16:00 UBT Hub. UBT 5S-Small Scales Smart SelfSustained (Entrepreunerial Innovation based EcoSystem) System

Edmond Hajrizi, UBT, Pristina, Kosovo

16:00 – 16:40 Implementation of IoT concepts via Azure services

Hena Malocu, UP, Pristina, Kosovo

Presentation of 4 students' projects connected to the IoT-ECO project

- 16:40 17:00 Coffee Break
- 17:00 17:45 Cybersecurity Challenges in Modern Smart Grids

Velimir Strugar, Mediterranean University, Podgorica, Montenegro, Faculty of Information Technologies

Friday, 26.07.2025

8:00 – 17:00 Organized cultural trip to Rila Monastery https://www.rilamonastery.info/

Lunch in Fish restaurant "Gorski kat"

Saturday, 27.09.2025

9:30-10:00 Presentation of the Quality Board Chair: Quality Assurance and Evaluation Mimoza Ibrani, University of Pristina, Kosovo

10:00-10:30 Presentation on the Project Dissemination Manjola Zeneli – UAMD

10:30-10:50 Coffee Break and visit to the event "Days of the automotive audio-visul systems 2025" in the yard between Building 1 and Building 2 of TU-Sofia

10:50 – 11:20 Presentation of the IoT-ECO hub, Kostas Berberidis and Christos Mavrokefalidis, University of Patras, Greece

11:20 –12:20 Coordination meeting of the IoT-ECO Consortium

Virtual participation of the external quality auditor Prof. Dr. Albana Halili from WBU,

Tirana, Albania

12:20 - 13:30 Certificate distribution

Free time

16:00 -18:00 Guided City tour in Sofia

Sunday, 28.09.2025

Final arrangements. Departure

4. Attendees

The Closing event of the IoT-ECO project gathered attendees from the coordinator institution TU-Sofia, which was the host and all other 8 partner HEIs. All Partners had teachers/staff attendees and the partners from Albania, Kosovo and Montenegro had students-attendees.

Two lists of attendees were filled in – one for the teachers/staff and one for the students, collected and stored by the coordinator and they are available upon request.

The total number of attendees was 70.

There were 41 teachers-attendees - 38 attendees on-site and 3 attendee – online.

Teachers/Staff attendees per Partner and per gender are presented in Table I.

Table I. Teachers/Staff attendees per Partner and per gender

Partner	Number of Attendees	On site	Online	Female	Male
TUS	8	8	-	5	3
UAMD	7	7	-	6	1
UPT	7	7	-	5	2
UP	5	5	-	4	1
UBT	3	2	1	1	2
UoM	3	3	-	1	2
UNIMED	3	3	-	2	1
TU-Graz	2	1	1	0	2
UPAT	2	2	-	0	2
WBU – external auditor	1	-	1	1	-
Total	41	38	3	25	16

Students-attendees per Partner and per gender are presented in Table II. In total there were 29 students- attendees.

Table II. Students attendees per Partner and per gender

Partner	Number of Attendees	On site	Online	Female	Male
UAMD	5	5	-	0	5
UPT	5	5	-	3	2
UP	5	5	-	3	2
UBT	2	3	3	0	2
UoM	6	6	-	3	3
UNIM	5	5	-	1	4
Total	29	29	3	10	19

The students followed all lectures and tutorials. The students from UP presented their projects related with the topics of the IoT-ECO project.

All attendees took part of all sessions in the agenda. The number of female teachers was higher than the number of male teachers and the number of male students was higher than the number of female students-attendees. In total there were 35 female and 35 male attendees, which made the event gender balanced.

5. Photos and dissemination materials

Photos were taken from all meeting, sessions, presentations and social program. 3 attendees presented videos about illustrating the IoT-ECO project achievements in their institution. All photos, videos and video-records are collected and stored by the coordinator and they are available upon request. Following the instructions at the Grant holders' meeting, the photos with attendees will not be inserted in the deliverable report.

In Figure 1 are presented the badges – blue for teachers and green for students.

Figure 1. IoT-ECO badges for the Closing event – blue for teachers and green for students

A special poster was designed for the Closing event with embedded QR code with the Agenda and it is presented in Figure 2. The poster was used for disseminating the Closing event in TU-Sofia. In the aula and in the lobby of the Building 7 a roll-on, another poster, flyers and brochures were made available for informing about the project. Each attendee received at the registration desk an IoT-ECO bag with IoT-ECO project dissemination gadgets as notebook, pen and mug. The team from UAMD distributed promotional IoT-ECO tee-shirts and metallic round badges. The newspaper "Technicheski avangard" of TU-Sofia sent a journalist to take notes and photos and to write an article about the event and the IoT-ECO project achievements. The event was also announced and followed in the social media of TU-Sofia and the project itself.

Figure 2. Poster for the Closing event of the IoT-ECO project in TU-Sofia

6. Training package and presentations

The coordinator presented the main achievements of the project. The training package was composed by the tutorials about the developed virtual models and digital twins.

6.1. Summary of the presentation of the coordinator

The IoT-ECO project started December 1st, 2022 with a consortium of 9 universities: Technical University of Sofia, Bulgaria – Coordinator, Technical University of Graz, Austria, University of Patras, Greece and 6 HEIs from the Western Balkans: 2 from Albania - University "Aleksander Moisiu", Durres and Polytechnic University of Tirana, 2 from Kosovo: University of Pristina and University for Business and Technology, and 2 from Montenegro – University of Montenegro and Mediterranean University of Podgorica. The project has 3 associate partners: Port of Durres Authority, Innovation Fund of Montenegro and CREA-KO SHKP. The project enters in the last trimester and will be completed December 1st, 2025. Three years of intensive work of the consortium led to tangible achievements:

- An IoT-ECO Hub was developed, and the consortium was trained to implement it.
- Teaching materials dedicated to the implementation of the IoT technology for green transformation were developed and made available at the IoT-ECO Hub - more than 30 new lectures, 20 new practical assignments, 5 tutorials.

- 3 Virtual models Digital Twins Demonstrators were developed: Port of Durres (by UAMD, UPT),
 UBT Campus (by UBT, UP) and UoM Campus (by UoM, UNIMED).
- 10 new courses and 3 updated courses were development, accredited and probated in UAMD, UPT,
 UP, UBT, UoM and UNIMED. Three new modules, implementing the new courses, were proposed.
- 9 Invited guest lecturers from companies and associate partners were organized.
- More than 100 students/ teachers and staff took part of the exchange of experience.
- 231 students (84F, 147 M) followed, took exams and evaluated the new and updated courses in the academic year 2024/2025.
- More than 670 students will have studied them by the completion of the project.

The Consortium organized multiple events:

- 3 events for exchange of experience from EU countries were organized in TU-Graz, University of Patras and TU-Sofia.
- An IoT-ECO Summer School was organized in July 2025 in UBT and UP, Kosovo in order to probate the newly developed IoT-ECO modules. More than 200 students attended the IoT-ECO Summer School and received certificates.
- 16 dissemination events open days, info-days and a webinar for people with disabilities were organized to demonstrate the achievements of the IoT-ECO project and to motivate people to contribute to the green transformation of their environment.
- 9 Memorandums of understanding were signed between the project consortium and companies in Kosovo and Albania, to implement and cooperate for the sustainability of the project results.

The achievements of the IoT-ECO project led to the integration of the IoT-ECO technologies for green transformation in the academic curricula, provided teachers, students and researchers with the necessary materials, virtual models-prototypes and demonstrators to illustrate the topic, attracted the attention of the society on it and motivated companies and administration to support it and to maintain the sustainability of the project.

6.2. Training materials on the newly developed virtual models

The teams from UAMD, UBT and UoM presented tutorials for the implementation of the virtual models, digital twins, demonstrators of the Port of Durres and the university campuses of UBT and UoM respectively. They made demonstrations with examples working in real time. The tutorials are presented in the Annex with the presentations from the Closing event.

Most of the presentations from the Closing event are also included in the Annex, except those which included photos with attendees or students. The last ones are stored in Trello and can be used internally in the consortium.

7. Minutes of the discussion and decisions

During the coordination meeting held on 27.09.2025 an intensive discussion was organized. The contact persons and the members of the Quality board of each partner HEI shared their thoughts on the IoT-ECO project and the achievements. All of them shared the satisfaction from the team work and results obtained. A desire was expressed to continue further after the completion of the IoT-ECO project, as a team and in new project applications.

Several proposals were formulated by the partners:

- To add all scientific papers produced in the framework of the IoT-ECO project in the list of dissemination activities.
- To publish at the IoT-ECO site the information about the students projects presented at the final event of the IoT-ECO project. To prepare a special issue of the IoT-ECO newsletter dedicated to the students' projects.
- To collect a specific document provided by the responsible HEIs from Bulgaria, Greece and Austria about the quality of the teaching materials and courses published at the IoT-ECO Hub by the WB HEIs.
- To intensify the work of the persons locally responsible for the Dissemination of the IoT-ECO project.
- To organize an online meeting dedicated to the final report.

The external quality auditor prof. Albana Hallili attended the coordination meeting. She made some recommendations:

- To keep the administration of the IoT-ECO site and IoT-ECO Hub after the completion of the project. The team from UBT informed the consortium that the administrative support is guaranteed for the next 5 years.
- She gave advices about the final report of the IoT-ECO project.
- She requested a special virtual meeting dedicated to the external quality report that she needs to prepare.

8. Quality report for the Closing event

The closing event of the IoT ECO project was held at the Technical University of Sofia from 24 to 28 September 2025. The event brought together representatives from all project partner institutions, including managerial staff, academic faculty, students, and external stakeholders. Throughout the program, participants presented the project's key results and deliverables, highlighting its academic and practical contributions. The agenda, along with accommodation and travel arrangements, was disseminated in advance to ensure smooth coordination. The event featured a comprehensive academic program complemented by cultural and social activities designed to foster collaboration and exchange. Following the conclusion of the event, evaluation forms were distributed to participants to collect feedback and support the development of a final quality assessment report.

Results

The results of quality survey, based on responses of 40 event participants, are summarized:

A. How satisfied you were with (1 = not satisfied, 5 = very satisfied)

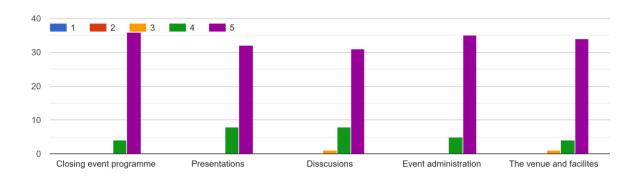


Figure 3. Results for the attendees satisfaction from

B. Please, mark your agreement (1 = strongly disagree, 5 = strongly agree) with the following statements:

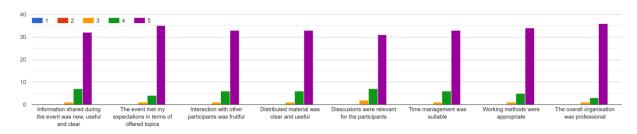


Figure 4. Results for the agreement of the attendees with different statements

The participants were asked for additional inputs/comments/suggestions/remarks related to closing event.

The following comments are received:

All activities on the framework of this project have been very beneficial Perfect

The closing event was well organized, with good interaction between participants and organizers, and professional overall organization. It was a pleasure to participate in this event.

The overall organization was very professional, the time schedule was convinient, the presentations were interesting and raised positive discussions.

Very good organisation. It was a pleasure to be a part of such event

Everything perfectly arranged.

Also learnt a lot about smart city

Great event!

We had a very pleasant time! We learned a lot about IoT and the history of Bulgaria, the places we visited were fascinating and the guides were really sweet and kind, thank you for everything!

Good job!

A huge congratulations to everyone involved in bringing this project to a successful close! The dedication, collaboration, and hard work from the entire team were truly inspiring. This closing event is not just the end of a project, but a celebration of what we can achieve together. Looking forward to future opportunities to build on this success!

It was extremely well organized and realized event indeed

Really friendly organisation team, congrats to all

The closing event was well organized, and project results were summarized. I liked very much the students presentations.

The event was well organized, informative, and provided useful discussions and materials.

Great team work!

The entire project was very well organized and also met all expectations in terms of new knowledge and experiences.

What I liked the most about the event was the interactive aspect of the work

I was surprised how good the project closing event was!

Everything was perfect

Everything was as it was supposed to be.

Thank you for your hard work on making this event happened.

The IoT Eco project has served as a valuable guide to better understand technologies such as digital twins and the opportunities they offer for improving efficiency in various fields, including energy, security, engineering, manufacturing, environment, healthcare, smart cities, government, and many more. Furthermore, this project has enabled networking among universities, students, and professors, fostering collaboration and innovation. We sincerely thank you for the opportunity you have given us.

The event was well organised!

No comment

10/10

Everything was organized in perfection

Well organized closing event

No comments

Best closing project ever!

Everything was conducted with professionalism. Great collaboration

The event was managed very professionally

The event was perfectly organised. The presentations and discussions were insightful.

It was my pleasure participating in the closing event, also I'm so glad I could meet other students and professors from different countries, thank you for having us there :)))

The project work group was excellent.

The closing event was very helpful and informative for the PHD students.

Wonderful experience

9. Conclusion

The closing event of the IoT-ECO Project marked a highly successful culmination of a collaborative and educational initiative. Participant feedback highlights the event's exceptional organization, engaging content, and meaningful interactions. The professional execution of the schedule, the quality of presentations, and the interactive nature of the sessions contributed to a dynamic and enriching experience for all attendees.

The project's framework proved to be highly beneficial, offering participants valuable insights into emerging technologies such as IoT, smart cities, and digital twins. These topics were not only well presented but also sparked thoughtful discussions, demonstrating the project's effectiveness in fostering intellectual curiosity and innovation. The inclusion of cultural elements, such as visits to historical sites in Bulgaria, added depth to the experience, promoting cross-cultural understanding and appreciation.

A key strength of the event was its ability to facilitate networking among students, professors, and institutions. This collaborative environment encouraged the exchange of ideas and laid the groundwork for future partnerships. The involvement of bachelor, master and PhD students and the emphasis on academic contributions further underscored the project's commitment to advancing research and education.

In conclusion, the IoT Eco Project and its closing event stand as a model of excellence in international collaboration, technological education, and event management. The success of this initiative offers a strong foundation for future projects and continued innovation in the field.

ANNEX

Presentations at the Closing event

1

loT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans

https://iot-eco.eu/.

01.12.2022 to 01.12.2025

101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Two and a half years we worked a lot

Meetings in Sofia, Tirana, Graz and Patras. Virtual meetings.

IoT-ECO Summer School, UBT, Pristina, Kosovo

Visits, meetings and presentations from companies and associate partners.

Exchange of experience and training courses for students, teachers and staff.

Development of the IoT-ECO Hub. Training.

Development of teaching materials.

Development of Virtual models, digitals twins and demonstrators.

Development, accreditation and probation of new and updated courses.

Development of new modules.

Feedback from the pilot courses. Analysis, adjustment, improvement.

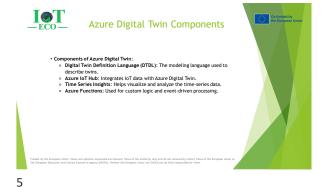
6

Thank you!

Contact: gim@tu-sofia.bg

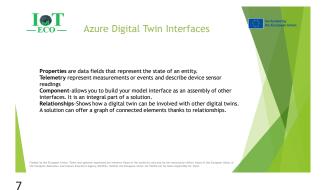
Project web site: https://iot-eco.eu/

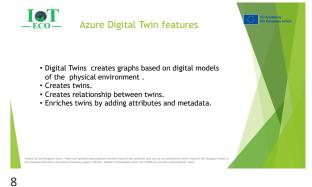
4



IOT ECO Azure Digital Twin - Azure Digital Twins is an ioT platform, integrated with other Azure services like Azure loT Nub, Azure Stream Analytics, and Azure Botta Epigerer.

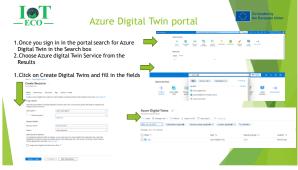
Nub, Azure Stream Analytics, and Azure Botta Epigerer


processes and pengles as a gigalia leperametation of real-world things, places, business processes and pengles an • It models every environment - This can make it easier to connect digital twin models to physical devices and systems, and to analyze and visualize data from those devices and systems. Azure Digital Phins includes a set of pre-bull templates and sample models that can be used as starting points for creating digital twin models. This can help developers get started quickly and reduce the time and effort required to create a digital twin from started quickly and require the time arise trivial sequences.


Azure Digital twins is designed to be highly scalable and can handle large numbers of digital twin modes and devices. This makes it suitable for our on large-scale loft projects of the project of the projec

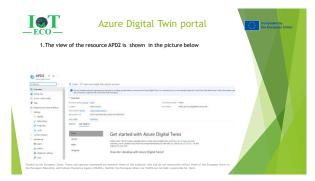
Digital Twin Definition Language IOT (DTDL): Model ID The modeling language used to describe twins. Open modelling language. Each device model has a unique ID Digital Twin Model ID(DTM) Each device model consists of a set of interface Interfaces describe attribute of devices telemetry, property command, component DTD Language contain 0,1 or many of each of the following felder.

6

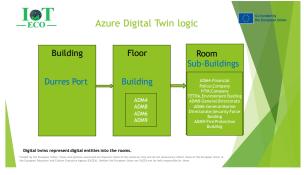

IOT ECO-Azure Digital Twin subscription 1.Go to the link: https://azure.microsoft.com/en-us 2.Click on tab Get started with Azure 3.Click on Try Azure for Free 4.Sign up 5.For students there are 200 \$ credits Free alte

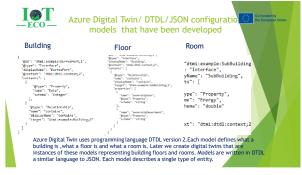
9

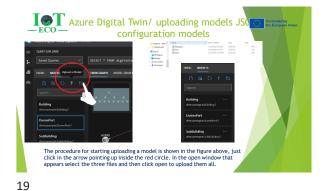
11

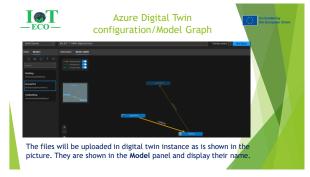


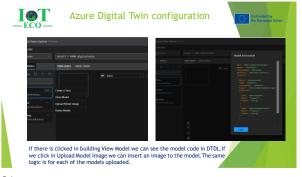
10

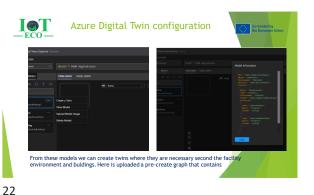




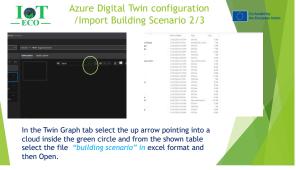


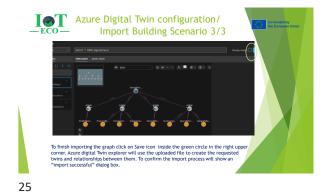

15 16



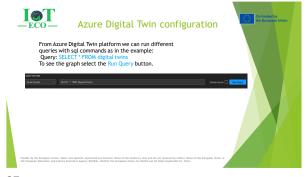


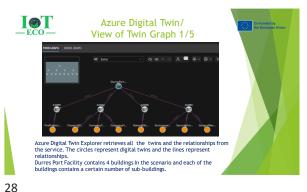
17 18

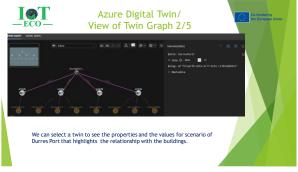


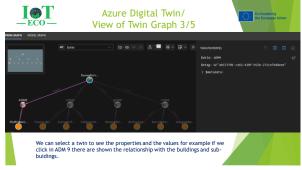


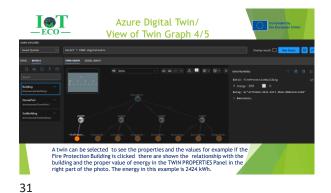
21

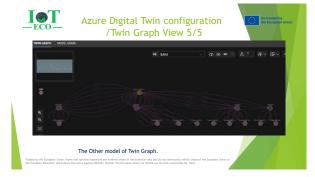


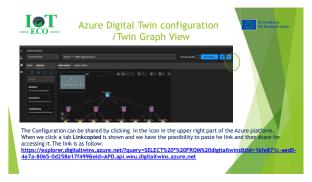


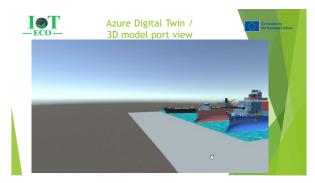

23 24

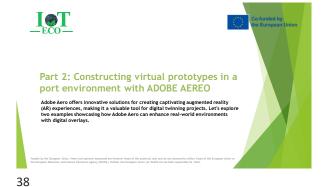


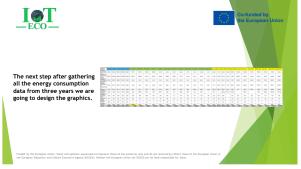


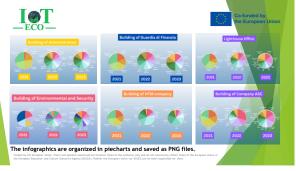


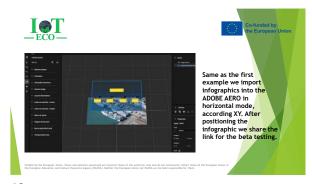





33 34


35 36





"Implementation of the IoT hub and Digital Twins at the UBT smart and self-sustainable city"

http://iot.ubt-uni.net/

<u>Iet</u>

toT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans https://iot-eco.eu/ Co-funded by the smus+ Programme to European Union

1

Co-funded by the Enough Programme of the Enough Programme of the Enough Programme of the Enough Enough Programme of the Enough Enough Programme of the Enough Enoug

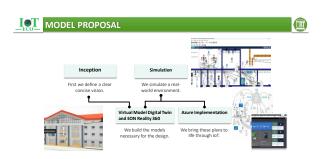
"Implementation of the IoT hub and Digital Twins at the UBT smart and self-sustainable city"

President of UBT Prof. Dr Edmond Hajrizi Dean of Computer Science and Engineering Faculty Assoc. Prof Dr. Besnik Qehaja

Closing Event IoT-Eco 24-28/09/2025

The European Commission support for the production of this presentation does not constitute an endonment of the contents which reflects the views only of the authors and project consortium, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

2



CURRENT SITUATION

4

Current Situation

- VIRTUAL MODEL

- ▶ Strategic Integration of IoT for Green Transformation
- ▶ Cross-Border Collaboration and Knowledge Exchange
- ► IoT-ECO Hub for Practical Solutions

 ►Inclusive Educational Approach for Sustainable Impact

▶ <u>Curriculum Enhancement:</u> Integrate virtual models into the curriculum to expose students to cutting-edge technologies.

▶ Pre-Implementation Insights: _Virtual models provide a virtual playground for our academic community to gain insights into proposed solutions before physical implementation.

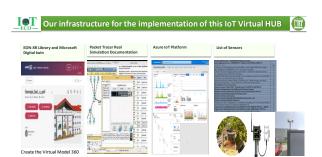
▶ Cross-Border Collaboration: Engage in collaborative projects with institutions in the Western Balkans and EU partners for knowledge exchange.

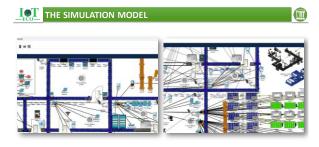
7

9

8

10

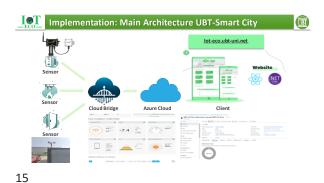


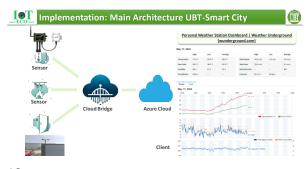

EXAMPLE: The Implementation in Agriculture from the UBT Staff and Students

Initial Prototype

Design Process

Actual Implementation





11 12

16

17 18

IoT Layer: Valve Control System

The valve control system consists of a soil humidity sensor, air temperature and humidity sensor, field controller, valve controller and sprinklers.

The valve control system collects and processes soil humidity, as well as, air temperature and humidity. It is managed through an all-digital network platform, and the data collected can be sent back to the control center and each monitoring center through the wireless network to realize the distributed monitoring and centralized control.

The valve controller communicates with the field controller through Node-Red, and the collected data are uploaded to the monitoring center by the field controller through the wireless network.

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans

ber: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Presentation title: "Towards an IoT Eco Futures: Sustainable Optical Communication and Hybrid Networks "

Erich Leitgeb and Pasha Bekhrad

Sofia, 24.09. - 28.09.2025

Pasha Bekhrad and Erich Leitgeb

1

3

2

Pasha Bekhrad and Erich Leitgeb

IoT-ECO 2025

TU Graz in the Closing event at TU-Sofia

September 24 - 28, 2025

Institute for Microwave and Photonic Engineering

Towards an IoT Eco Futures: Sustainable Optical Communication and Hybrid Networks

ihf Institut für Hochfrequenztechnik

IOT

Towards an IoT Eco Futures: Sustainable **Optical Communication and Hybrid Networks**

- > Introduction, Motivation, Principles and Basics
- Wireless Technologies / RF compared to FSO (propagation effects on Free Space Optics (FSO), WLAN, DVB-T, Satellite Communications, LMDS)
- Applications / Different Scenarios / Broadband Access
- Results, Proposals and Further Work

Pasha Bekhrad and Erich Leitgeb

IOT

Towards an IoT Eco Futures: Sustainable Optical Communication and Hybrid Networks

Erich Leitgeb Pasha Bekhrad

Institute of Microwave and Photonic Engineering, University of Technology, Graz, Austria, erich.leitgeb@tugraz.at bekhrad@tugraz.at

Pasha Bekhrad and Erich Leitgeb

4

6

1 Introduction Motivation

for Combining RF and Optical Wireless

- To increase the **Data Rates** of the Transmission System (Broadband Access and Backbone)
- To improve the Reliability and Availability of the Transmission System (including Redundancy and Site Diversity); for 5G the Network Infrastructure is an important fact!!!
- To increase the Cost Efficiency of the Transmission System
- Achievable by Combination, because of
 - Different Propagation Behaviour
 - · Different Weather Influences

Pasha Bekhrad and Erich Leitgeb

5

Introduction

Advantages (FSO, compared to other Communication Techniques)

- · large Bandwidth high Data Rates
- Focusing / Narrow Beam
- Electromagnetic Compatibility
- minimising ,electromagnetic Pollution'
- protection of ,wiretapping'

- Disadvantage of FSO: Reliability is mainly determined by local weather (and not only by electrical and optical components or network infrastructure)
- Bad weather conditions attenuation limited range
- Leads to usage of FSO for the Last Mile Access mainly!!!

Pasha Bekhrad and Erich Leitgeb

7

Considered

Technologies

Optical Wireless compared to RF Wireless and "Wireless Technologies" used in the different scenarios

- Propagation effects on FSO and differences to common Wireless Technologies
- FSO systems and first combinations with LMDS
- Digital Video Broadcasting-Terrestrial (DVB-T)
- Wireless LAN (WLAN)
- Satellite Communications
- ➤ Combination with **5G and LTE** (!Autonomous Driving!)

!!!! Combinations in parallel and serial setups !!!!

Pasha Bekhrad and Erich Leitgeb

8

2.1 FSO - Channel

Reliability of Optical Wireless - the FSO Channel

Attenuation mainly caused by:

- Molecular absorption (always the same value depending on height and molecules in the air
- Scattering on particles (molecules, aerosols, fog, clouds, rain, etc.)
- Atmospheric turbulences (scintillations, variation (change) of the refractive index)

Pasha Bekhrad and Erich Leitgeb

9

11

IOT

2.1 Scattering on particles

- Rayleigh-Scattering (only Rayleigh-Scattering results in a visibility of 350 km); proportional f 4 - important for very small particles only (much smaller than the used wavelength)
- Visibility is mainly influenced by additional Scattering (Mie-Scattering) - important for the larger particles in clouds and fog (particles of the same size like the used wavelength)

Pasha Bekhrad and Erich Leitgeb

2.1 Weather Influence ToT on FSO

The optical channel is significantly different from the RF channel!

Fog, Clouds and Snow mainly affect the reliability of Optical Wireless links

Type 2 FSO-Systen

Type 3 FSO-System

Pasha Bekhrad and Erich Leitgel

10

12

2.1 Comparison of FSO and µW - Mie **Scattering**

- For a stand-alone FSO system, fog can cause attenuation of up to 100 dB/km in the climate around Graz (800 dB/km in some regions), while rain can cause attenuation up to 25 dB/km in a heavy thunderstorm at a rain rate of 150 mm/h, which is comparatively less important.
- The same rain rate can cause up to 50 dB/km attenuation for a microwave link (up to 35 dB/km for 40 GHz), while fog does not particularly matter, and increased humidity causes less than 5 dB/km.

Pasha Bekhrad and Erich Leitgel

11

Nice

2.1 Micro-physics of fog

IOT

- Radiation fog (continental / city fog); like spec. Attenuation in Graz: 100 dB/km (slow changes) particle diameter ~ 4 µm, liquid water content between 0.01 and 0.1 g/m³
- fog (maritime Advection fog); like spec. Attenuation in Nice: 300 dB/km (fast changes) particle diameter $\sim 20 \mu m$, liquid water content 0.2 g/m³

Pasha Bekhrad and Erich Leitgeb

2.1 Specific attenuation of fog

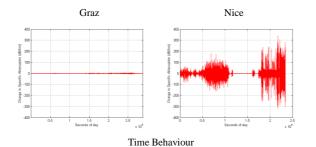
Graz

Max. Attenuation measured in Graz (120 - 150 dB/km) Max. Attenuation measured in Nice (up to 780 dB/km)

13

15

15

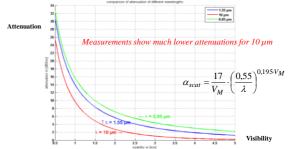

17

13

14

IOT

2.1 Changes in specific attenuation of fog


Pasha Bekhrad and Erich Leitgel

2.2 Wavelength

Attenuation and Visibility

n (reu); ght, CBL GmbH (Dietburg, D) Pasha Bekhrad and Erich Leitgel

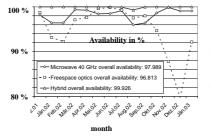
16

2.3

FSO and $\mathbb{I}_{ECO}^{\bullet}$ RF links

First experiments started in 2001 / 2002 with Directional Radio Systems and LMDS

> Optical links between Graz Inffeldgasse 10 and Observatory Lustbühel (2.7 km)


FSO and directional radio

Pasha Bekhrad and Erich Leitgeb

2.3 Experiment

Combined / Hybrid Systems

LMDS and FSO in parallel

Local Multipoint Distribution Service (LMDS) - a broadband wireless access technology - planned for <u>digital television</u> <u>trans-mission</u> (DTV) as a fixed wireless, point-to-multipoint technology for <u>last</u>

December 2001 - January 2003

a 40 GHz Microwave system installed at TU Graz

Pasha Bekhrad and Erich Leitgel

17

IOT —ECO—

2.3 FSO - well suited for Broadband Access Networks

- Quick installation of optical short distance links in urban areas (Point-to-Point / Point-to-Multipoint Systems)
- Broadband link for railway, highway or river crossings
- Links between buildings of companies or institutions (no ,wire-tapping*)
- > Rapid replacement of broken cable-links in emergency situations
- Short term installation for mobile / nomadic use (e.g. seminars, meetings, events)
- Connections to subsidiaries, storage depots (outposts) of companies or other institutions
- ➤ For Disaster Management, Disaster Recovery and CIMIC purpose
- > Quick communication connection to Broadband Backbone

Pasha Bekhrad and Erich Leitgeb

20

20

2.3

Next Generation of GBit Ethernet

Gigabit Ethernet FSO Unit

· FSO NG (in modules), as Broadband Access to 5G etc

GBit Ethernet (in 2004 very expensive)!!!

Pasha Bekhrad and Erich Leitgeb

19

2.4 **DVB-T**

2.4 DVB-T

GBit/s Free Space Optics Systems for Last Mile

Multi-Beam design concept, 8 Transmitters, 1 Receiver (in 2004)

- In 2005 relatively new and widespread technology, initiatives from local governments to establish additional DVB-T channels
- Bandwidth per channel from 5 to 23Mbit/s
- ➤ IP over DVB standard is already existing (MPE Multi Protocol Encapsulation)
- Outstanding advantages regarding wave propagation and reflections on metallic surfaces or armoured concrete
- Set Top Box needed / Ideas of Combinations with other communications technologies

Digital Video Broadcasting-Terrestrial (DVB-T)

Pasha Bekhrad and Erich Leitgeb

In 2015 an international project "SEE TV-WEB" for using DVB-T for Internet-Access were finalized

Tackling the "Digital Divide" in SEE by using the capacity of DTT networks

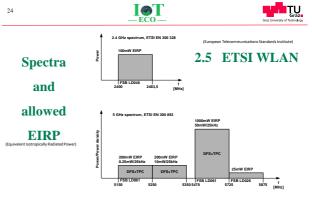
Acronym: SEE TV-WEB

TU Graz was involved in this South East Europe Programme

Pasha Bekhrad and Erich Leitgeb

21

23


2.5 WLAN

License free Wireless LAN / first ideas of combinations with FSO (long time before 5G)

WLAN

- -Free to use for everyone
- -Possible interferences
- -Limited EIRP
- -2.4GHz and 5GHz spectra

Pasha Bekhrad and Erich Leitgeb

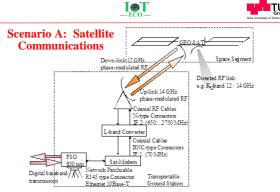
TPC: Transmit Power Control

DFS: Dynamic Frequency Selection

Pasha Bekhrad and Erich Leitgeb

23

24


3 Applications / Different Scenarios **Combination Experiments**

- > FSO systems and first combinations with LMDS (shown)
- > Satellite Communications
- Wireless LAN (WLAN) (in CIMIC exercise)
- Digital Video Broadcasting-Terrestrial (DVB-T)
- New ideas with Optical Feeder Links and Visible Light Communications
- Autonomous Driving and Hybrid Deep Space Links

Green Photonics

Pasha Bekhrad and Erich Leitgeb

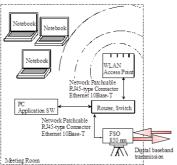
25

As example a usual K_U-Band Satellite Ground Station

Pasha Bekhrad and Erich Leitgeb

26

27



Scenario A: SatCom (RF) with FSO and / or WLAN

A typical K_U-Band Satellite Ground Station is connected with FSO or / and WLAN to a conference- or meeting room

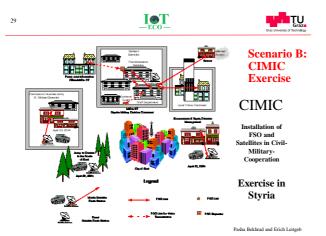
Scenario A: Satellite Communications (RF) in combination with FSO and / or WLAN

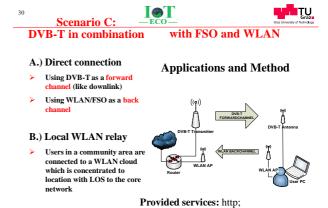
Pasha Bekhrad and Erich Leitgeb

Scenario A: Satellite Communications (RF) in combination with FSO and / or WLAN

IOT

Mil Div ST at the combat in south of Graz


also used in combination with Scenario B: CIMIC Exercise


Pasha Bekhrad and Erich Leitgeb

27

28

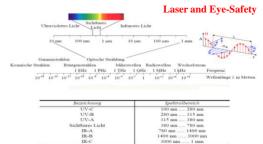
30

email; VoIP; VoD; VPN Pasha Bekhrad and Erich Leitgeb

32

32

Future Scenarios in Green Photonics


- Further tests with Internet services like http, email, VoIP and multimedia services will be demonstrated and evaluated
- Proposals for Optical Feeder Links and Visible Light Communications
- Combination of FSO and RF technologies (including Site Diversity / Redundancy); for 5G of main interest
- Combination scenarios for Autonomous Driving (with special interest on 5G and Deep Space Communications

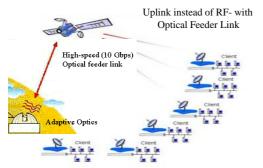
Pasha Bekhrad and Erich Leitgeb

4 Optical Communications (Fiber and FSO)

IOT

High Carrier-Frequency, high Bandwidth and high Data Rate

Pasha Bekhrad and Erich Leitgel


31

33

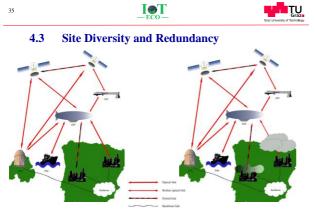
IOT

4.1 FSO as uplink for Broadcast Satellites

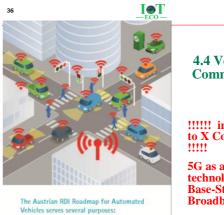
Pasha Bekhrad and Erich Leitgeb

LED Light Fixture for LCD TV

Send


Light On/Off O Color Info, etc. O Visible Light Communications

Backchannel with RF, WLAN, IR etc.


Pasha Bekhrad and Erich Leitgeb

33

34

Pasha Bekhrad and Erich Leitgeb

4.4 Vehicle to X Communication

!!!!!! in-Car and Car to X Communication

5G as an important technology, but for Base-Stations the nec. Broadband Access!!!

Pasha Bekhrad and Erich Leitgeb

35

4.4 Vehicle to X Communication

Austrian Research, Development & Innovation Roadmap for Automated Vehicles

!!!!!! Communication is an important factor in-Car and Car to X Communication !!!!!

Pasha Bekhrad and Erich Leitgeb

IOT

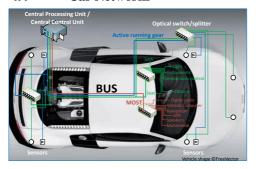
VLC (Visible Light Communication) in Traffic 4.4

- · LED as Transmitter at the automobile headlight
- Light for Communications at traffic lights or other Infrastructure will be detected
- · In tunnels etc. also for navigation

Communication Car to X (Car / Infrastructure)

37

I T



38

I 🐠 T

Car Networks 4.4

Pasha Bekhrad and Erich Leitgeb

4.4 Vehicle to X Communication

- In-Car (Fixed or Wireless) with Sensors and Electronics (incl. NFC and RFID)
- Car to X Communication (5G and OWC in combinations)
- Traffic and Car Sensors (including Radar, Lidar and cameras)
- Main Aspects 1) Costs / Power Consumption / Energy; 2) Efficiency / Innovation; 3) Reliability / Availability; 4) Safety / Security

Pasha Bekhrad and Erich Leitgel

40

41

39

IOT

Pasha Bekhrad and Erich Leitgel

42

Final Conclusions and further work

To increase the link reliability and cost efficiency by

- Combination of FSO and RF technologies (planning with 5G)
- Site Diversity / Redundancy (also relevant with 5G)
- 10 µm wavelength and other high bitrate technologies
- Alternative Modulation and Coding Techniques
- · Possible Combinations of RF and Optics also in Sensor and **Navigation Technologies**

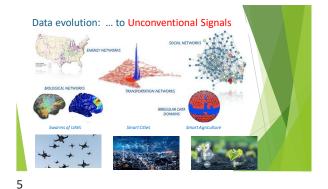
Green Photonics

Pasha Bekhrad and Erich Leitgeb

41

THANK YOU FOR YOUR ATTENTION!

Pasha Bekhrad and Erich Leitgeb



Data evolution: from Conventional Signals ...

Our small

Ally

4

More on the new Data

Data generation is becoming:

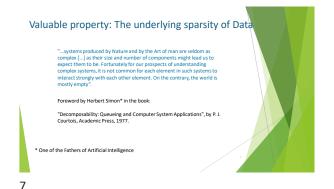
Massive (and sparse)

New means of exploring the physical world

Unstructured and Irregular

Often collected in a distributed manner

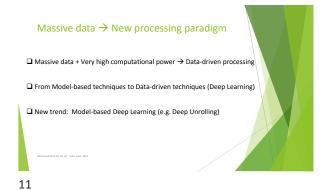
Nature-to-Machine Communication (and interaction)


M2M communication and cooperation

New challenges for sciences related to data gathering and processing e.g.

Signal Processing, Machine Learning, IoT, Communication Networks,

Applied Statistics, Scientific and High Performance Computing


6



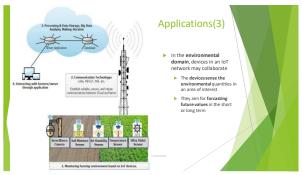
SparseLand: Technical examples A network may comprise a huge number of nodes where the maximum number of links is $O(N^2)$, however, the actual number of links is commonly O(N). So, the so-called "Adjacency matrix" is sparse. Left: A time-domain signal Right: Its Fourier spectrum Left: LENNA image Right: Its DCT transform

SparseLand: Technical examples (Cont.) Sparsity in Deep Neural Networks (b) Sparsified MLP (a) Dense MLP training example 10

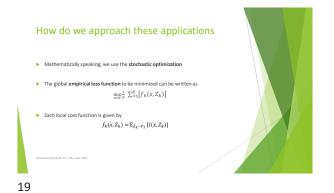
Computing (and Learning) on the Edge*

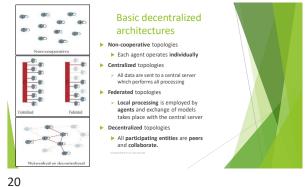
- In many cases, immense amounts of data are available, but at different spatial locations
 - •Exchanging data can be prohibitive because of
 - Inefficient communication resources
- **Privacy** considerations
- Other problems of Edge Computing:
 Different nodes (spread in space) observe the same phenomenon, or
 - Several **subsets of nodes** observe **different** phenomena, or **Different nodes** observe different **views** of the same
 - phenomenon.

Edge: the part of the network which is close to where data is generated. Edge devices; smartphones, IoT sensors, cameras, drones, wearables, embedded system


13

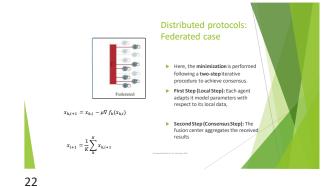
Applications(2) In the medicine field, especially during pandemic outbreaks or other massive emergency situations Many patients remain at home due to hospitals reaching full capacity quickly Medical IoT devices (such as oxymeters, ECG Monitors) collect patients data remotely. These devices enable collaborat among healthcare providers for coordinated patient care.


16

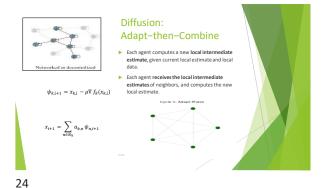

18

How do we approach these applications Under the decentralized setting Assuming K agents with sensing, processing and communication capabilities and a common task. ► The agents may or may not **collaborate** with each other. In the case of collaboration, each agent k can communicate with its **neighborhood** N_k or with a centralized server. All agents are designed to estimate/detect/learn a common unknown variable x using available local data. \blacktriangleright This is accomplished by **minimizing a local cost-function** $f_k(x)$.

17






Decentralized protocols:

The non-cooperative case

| Each agent operates in a stand-alone fashion and solves its local minimization problem with respect to its local data using gradient descent. $x_{k,l+1} = x_{k,l} - \mu \nabla f_k(x_{k,l})$

Distributionally robust optimization in FL (1)

Traditional FL (e.g., using FedAvg) has convergence or instability issues due to

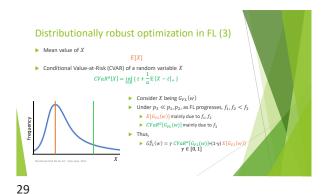
non-id data among users (Incoma s*client-drift*).

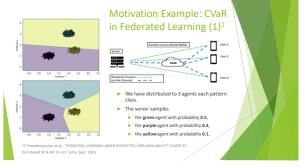
non-uniform user availability (network outages, battery savings, user inactivity).

The non-id case has been studied in current literature by weighted averaging rules, gradient corrections, etc.

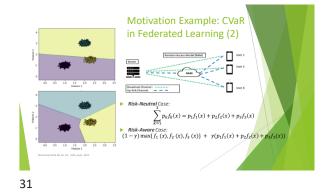
The non-uniform availability of users is less considered in current literature, however, poses an interesting challenge in FL.

How can we take into account users that, although infrequent, they have useful data to contribute?


Distributionally robust optimization in FL (2)


Let us assume that there are three users that participate in an FL process

Let us assume that their loss functions are $f_1(w), f_2(w), f_3(w)$ Let us assume that the third user actually participates very rarely, namely, $p_3 \ll p_1, p_2$ holds for the probabilities of participation

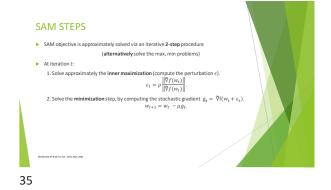

Under traditional FL aggregation rules like FedAvg, the following cost function holds $G_{FL}(w) = p_1 f_1(w) + p_2 f_2(w) + p_3 f_3(w) \approx p_1 f_1(w) + p_2 f_2(w)$ How can we take into account also the cost function of the "useful" but infrequent third user?

27 28

30

Sharpness Aware Minimization (SAM)

Sharpness Aware Minimization (SAM) aims at improving the generalization gap via:


▶ jointly optimizing Empirical Risk and
▶ seeking flat minima solutions.

Formally this idea is described via a min-max problem:

min max
min max
min max
f(w + e).

This measure denotes the worst case (max) possible loss at an ρ-ball neighbourhood around w
and tries to minimize it.

33

Phe good news for SAM:

SAM solution follows a simple two-step iterative process.

Currently, SAM facilitates state-of-the-art generalization performance in both centralized and distributed (federated, decentralized) learning settings.

The bad news for SAM:

Double computational cost: Requires 2 gradient computations (double the cost versus 560, ADAM optimizers).

This cost "inflation" is even greater in distributed learning.

36

What to Take With You Nowadays, we have immense amount of available data received by IoT sensor devices. ► There exist great need for Edge Computing. We seek for collaborative solutions dealing with data heterogeneity and communication network barriers, preserving data privacy. Mathematically we model these problems under Standard Stochastic Optimization Techniques, but it faces some challenges under uncertainty. So, an interesting tool for training under uncertain environments is to use more Robust Methods, like Risk and Sharpness measures

38

39 40

1

5

Exploring the Impact of IoT in Key Sectors Why IoT Matters:

Efficiency and Automation:

IoT streamline processes, reduces human error, and increases operational efficiency across various sectors.

Data-Driven Decision-Making:

The vast amounts of data generated by IoT devices provide valuable insights, enabling informed decision-making and strategic planning.

Innovation and Competitiveness:

Companies and institutions that leverage IoT are at the forefront of innovation, galining a competitive edge in their respective fields.

4

Industrial IoT (IIoT) Explained

Integration of IoT into manufacturing and industrial processes

Key enablers: sensors, cloud platforms, automation

Role of IioT in industry

Use Cases of IioT industry

Use Cases of IioT insert Factories; Energy Management; Remote Monitoring; Industrial Robotics

Food is in furnament on the food of IooT insert Factories (Energy Management; Remote Monitoring; Industrial Robotics Insert Factories (Ioo IIoO) Insert Factories (Ioo IIIoO) Insert Factories (I

- Smart Factories.
- Smart Factories support for technologies to automate and optimize manufacturing processes. By integrating lot devices with robotics, smart factories solchive higher efficiency, precision, and flexibility in production lines.

- IoT-enabled automation - IoT devices enable real-time data collection from various stages of the manufacturing process. This data is used to automate tasks such an smethal handing, assembly, and quality corror, reducing the need for manufacturing process. This data is used to automate tasks such an smethal handing, assembly, and quality corror, reducing the need for manufacturing process. This data is used to automate tasks such an smething, and quality corror, reducing the need for manufacturing process. This data is used to automate tasks such as welling, painting, and assembly with high precision and consistency. These robots are connected to central control systems that monthor their performance and adjust operations as needed to maintain optimal efficiency.

- Plexibility in Productions of 16-mabled robots can be reprogrammed and reconfigured quickly to accommodate changes the process of the production for the production reduces the adjusting for contomized orders. This flexibility allows summar factories to respond rapidly to market demands.

- Real-Time Bectsion-Making: Iof devices product eval-time data on production merics, allowing factory manages to make informed decisions on the fily. For example, if a bottlement's demands.

- Real-Time Bectsion-Making: Iof devices product eval-time data on production from the production line, the system can automatically rerout easts to other areas to maintain overall productivity.

- Predictive Maintenance: Iof senons collect and analyze data over time to feeling paterns and trends that indicate paterns and the production for the productivity.

- Using Iof senons to predict machine failures reducing downtime and repair costs.

6

Not in Supply Chain Management Use Cases

 Automated: Warehouse Management
 Stock Counting
 Dynamic Storage Allocation
 Netail Supply Chains
 Smart Shelves
 Real-Time Stock Monitoring
 Cold Chain Management
 Temperature-Sensitive Inventory

 Temperature-Sensitive Inventory

9

11

Energy Management and IoT

Figure 1. Energy Efficiency in Industrial Settings:

Smart energy grids and real-time energy monitoring
Optimizing energy consumption in industrial equipment

Figure 1. Smart energy grids and real-time energy monitoring
Optimizing energy consumption in industrial equipment

Energy Management and IoT Case Studies

- Case Studies

- Case Studies

- Case Studies

- Companies successfully implemented lot for energy management

- General Electric (GE)-Smart Energy Solutions:

- Get has implemented of solutions in its operations and for its customers, focusing on optimizing energy of the solutions of the solutions in the soperations of the solutions of

Some City Infrastructure: A smart city uses IsT and other digital technologies to improve the quality of life for its existence, whose when services, and optimize the efficiency of the great statement of the property of the for its existence, enhance make nevince, and optimize the efficiency of the great statement, by integrating for Into city Infrastructure, municipalities can address challenges such as traffic congestion, waste management, and public safety.

To Fis Role in Smart Cities:

10 For device and sensors are embedded throughout urban environments, collecting real-time data that informs decision-making, resource allocation, and the delivery of public services.

10 For in urban traffic management, waste management, and public safety.

Traffic Flow Optimization: Smart Traffic Lights: Adaptive Traffic Control Systems: Connected Vehicles

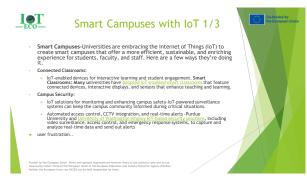
Real-Time Traffic Monitoring

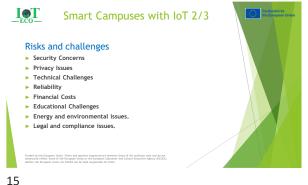
Real-time data collection for improved decision-making-Data-Driven Governance

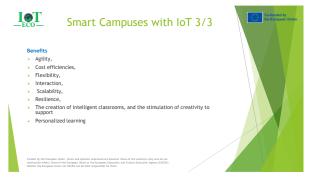
Central Europe Data Platforms

Smart City Solutions in Industry:

Industry-specific applications, including construction and utilities


Traffic Flow Gramma Nume. Waste and semant part of their feature leaves flowers flowers.

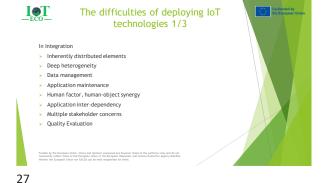

12


8

10

IOT IoT in Port Energy Management • Energy Efficiency in Smart Ports: $\succ \;$ IoT sensors for monitoring energy usage in ports > Smart energy grids and renewable energy integration · Case Study: · A port utilizing IoT for energy efficiency improvements-Durres Port Authority > Usage of Smart energy Meters > Application of solar panels for reducing hydro energy usage and prioritizing renewable energy Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Esecutive Agency (EACEA). Neither the European Union or FAECA can be held responsible for them.

22 21


IOT Data Analytics and Decision-Making in **Smart Ports** · IoT-Enabled Analytics in Ports: > Role of data analytics in optimizing port operations Predictive analytics for maintenance and resource allocation · Case Study: A port using real-time data for operational efficiency-Durres Port authority is using video analyzing in CCTV system to monitor all the pedestrian and auto operations in port Temperature is being monitored in server room I Durres Port by the data generated from the sensors of temperature incorporated in the network and storage devices

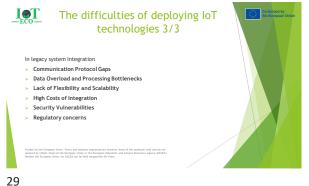
24

20

In Cybersecurity threats

In Cybersecurity threats

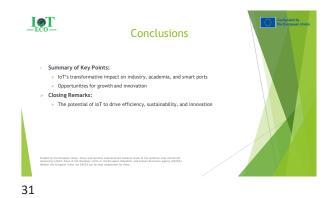
The issue of default passwords


Unsafe communication and unsecure personal information

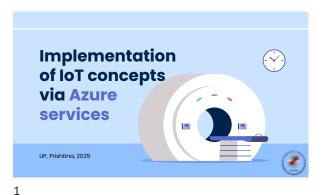
The deployment of automation and Al management when is not configured properly

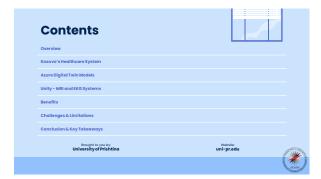
I of Traffic unencrypted

Insufficient security support to battle threats


28

The benefits of deploying loT technologies


- Automation
- Predictive Maintenance
- Process improvement
- Cost Reduction
- Improved Insights
- Adaptability
- Compliance
- Mobility


30

4

6

Kosovo's Healthcare System The healthcare system in Kosovo faces several challenges, 11/11 particularly in managing medical equipment, predicting failures, and providing timely services in high-demand hospital departments. This project proposes the development of a Smart mis project proposes the development of a smart Healthcare Center model that leverages Microsoft Azure Digital Twins integrated with Artificial Intelligence (AI) to improve predictive maintenance and assist medical personnel with intelligent diagnostics.

Introduction to Healthcare Monitoring 01 02 03 Importance of Focus on MRI Challenges Healthcare facilities often face issues with device malfunctions, leading to operational delays and increased costs, making predictive maintenance vital. Monitoring and EKG Continuous monitoring of healthcare devices ensures optimal performance and patient safety, reducing downtime in critical positions of the patients of the pat MRI and EKG machines are essential in diagnostics; their efficient operation is crucial for timely patient care and accurate results. medical settings.

5

Faculty of Information Technologies Mediterranean University – Podgorica, Montenegro

Cybersecurity Challenges in Modern Smart Grids

Cyber digital security of the energy infrastructure

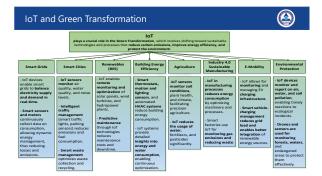
Asst. Prof. Velimir Strugar, Ph.D. velimir.strugar@unimediteran.net

2022-CBHE-STRAND-2 Technical University of Sofia 24-28 September 2025

1

3

5


Topics:

■ WE ARE GOING TO DISCUSS ABOUT:

- IoT and Green Transformation
- Smart Grid Architecture
- Cybersecurity Risks in PV / RES Power Systems
- PV / RES Power Systems: Key Principles
 Smart Inverters and IoT Integration
- What can be the target of Cyber attack?
- Real Cyber Attacks on Energy Sector some Case Studies
- Usual and most common vulnerabilities of PV systems
- Consequences of Cyber Attacks and Improving Cybersecurity and Privacy
- Standards and Regulations
- Risk Assessment in PV Systems
- EVs and Charging Stations as IoT Cyber-Physical Entities and Documented Cyber Incidents in EV Infrastructure
- Conclusions and Discussion

2

The smart grid is based on:

advanced metering infrastructures (AMI);

two-way communication (PLC or some other);

advanced energy storage systems;

data management and processing.

data management and processing.

A smantagedia enhibitactical grid that integrates the behavior and actions of all commenced entitles - generators, consumers and prosumers

Prominent features of SG are:

Two-way energy flow, full RESs, ESs and EVs integration
Increased energy efficiency—high level
The changed role of the consumer
Integration of ICC.

Sensor technology and loT (consumer and network technology equipment)
Smart houses

4

PV / RES Power Systems: Key Principles Photovoltaic (PV) systems transform sunlight into electricity using semiconductors. The main parts of a typical PV system are: Solar Electricity Production . PV panels Inverters (DC to AC conversion) . Mounting structures Communication and monitoring systems Cabling and protection dev Types of installations: . Grid-connected . Hybrid systems (grid + batteri Key Related Standards . Fully off-grid IEC 61215 – PV module performance tests (2021) IEC 61730 – Safety for PV modules (2023) IEC 62109 – Safety of inverters (2022) ISO 9488 - Solar energy terminology (2020)

Smart Inverters and IoT Integration Modern inverters have many smart functions: Connect to cloud systems Measure and optimize energy flows in real time Support grid stability with reactive power control Work with energy storage and electric vehicles IloT enables: Remote monitoring and updates Communication through Wi-Fi, Ethernet, or

6

Data transfer to analytical platforms

☐ But IoT also increases cybersecurity risks for

IoT based PV Systems = Smart Grid

- ☐ IoT transforms PV systems into smart grids enabling:
 - Remote monitoring and diagnostics
 - · Predictive maintenance
 - · Optimizing power flows
 - · Managing energy storage and demand
 - · Detecting failures early
- Smart grids decide:
 - · When to store or release energy
 - . When to export power to the grid
 - · How to shift loads to cheaper periods
- However, IoT systems collect user data, raising privacy concerns about household habits and energy use.
- ☐ A Smart Grid is unthinkable without smart
- ☐ The architecture of the AMI system implies
 - Smart meters:
- data concentrators (optional); communication network;

7

Cybersecurity Risks in PV / RES Power Systems

- Modern PV / RES systems are critical
- □ Cyber-attacks could:
 - Steal/compromise energy production data
 - Manipulate the inverter settings
 - Send false grid signals
 - Shut down PV generation
 - · Demand ransom payments
- □ Privacy risks include:
 - Knowing when people are at home

 - Learning daily routines Tracking EV charging times
 - Using data for stalking or burglary planning
- Inverters are the most risky component of a PV system, because they may contain untested

8

Usual and most common vulnerabilities of PV systems

- □ "Cyber event" is a disruption to electrical or communication systems caused by unauthorized access to hardware, software or communications networks. (according definition provided by USA
- ☐ Prepartment of Energy) make PV systems vulnerable:
 - Many solar web dashboards are exposed to the Internet without proper login protection.
 - · Default admin passwords often remain unchanged after installation
 - Some inverters lack secure firmware update mechanisms, leaving known bugs unpatched.
 - · Cloud APIs sometimes leak sensitive data if improperly secured.
- · Wi-Fi encryption can be outdated or weak.
- ☐ For example, in 2023, a simple search on Shodan found thousands of inverters accessible directly from the Internet, many with factory-default credentials. (SHODAN Sentient Hyper-Optimized Data Access Network)

What can be the target of Cyber attack?

- Attackers can target inverters, SCADA systems, networks, and cloud-based compoperations, steel data, or manipulate energy flows.
- ☐ Inverters are often directly connected to the internet for monitoring and management, making them a potential target. Attackers could exploit vulnerabilities in the inverter's software or communication protocols to manipulate power output, disrupt operations, or even spead malware.
- ☐ PV Systems often use SCADA (Supervisory Control and Data Acquisition) systems, which are designed to be user-friendly but can be vulnerable to attacks. Exploiting these vulnerabilities could allow attackers to gain control of the system and disrupt operations.
- ☐ Hackers can target PV installations through network attacks by exploiting open ports, introducing malware, or intercepting unencrypted communication.
- Cloud-based systems used for monitoring and managing PV installations can be vulnerable to attacks. Attackers can exploit login credentials or intercept communications to gain unauthorized access.
- ☐ PV systems rely on various third-party service providers, including software and hardw Exploiting vulnerabilities in these providers' systems can provide attackers with access
- Attackers could inject false data into the system, potentially leading to miscalculations, inaccurate readings, and compromised control of the system. Types of DIAs include False Data Injection Attacks (FDIAs), Covert Attacks (CAs), and Replay Attacks (RAs).

10

Consequences of Cyber Attacks

- ☐ Cyber attacks on PV systems can:
 - · Stop power production
 - Damage equipment by voltage spikes
 - · Leak private user data
 - Cause financial losses
 - · Influence electricity market prices
 - · Reduce public trust in renewable energy
- ☐ Example:

9

- In 2023, an attack attempted to overload solar inverters in a U.S. utility, but safety systems prevented
- ☐ A compromised smart system might:
 - compromised smart system might: if the storage system is already under attack, which is less harmful:

 * Keep batteries charged but refuse discharge disabled charging disable
 - · Feed power into the grid at the wrong times
 - Shut down healthy systems with false error codes

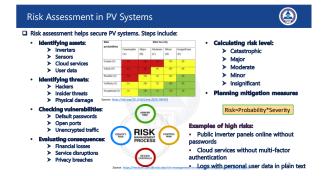
Real Cyber Attacks on Energy Sector - some Case Studies

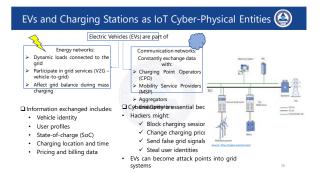
- ☐ Some real attacks show risks for PV and energy systems:
 - nial-of Service) Attack (USA, 2019) Attackers disrupted communication between control multiple PV and wind plants by exploiting firewall vulnerabilities.

 utblestefault/liles/media-informa/2019-1-31-obsersoon.com.

 ry was hit by new orbanitack in ment-baff
 - Hadxivist attack on Lithuanian Solar Park (2024) Pro-Russian hacktivists compromised monitoring systems, briefly gaining control over multiple PV installations. https://cola.com/blog/colar-monitoring-solations-in-hadd
 - Solarman & Deye Cloud Platform Vulnerabilities (2024) Security flaws exposed over 195 GW of global PV otential remote manipulation. https://w er-to-run-the-united-states
 - Hidden Remote Shutdown Modules In Inverters (2024) Undisclosed remote-control features in Chinese-made inverters were remotely activated, disabiling units in multiple countries; <u>transitional and international activation of the Chinese Control of the Chinese Chine</u>
 - SUN:DOWN Multiple Vulnerabilities in Popular Inverters (2025) Over 40 serious vulnerabilities found in Sungrow, Growatt, and SMA inverters, potentially allowing attackers to destabilize grids. https://www.foreco.tom/gross-inlesses/foreco-inden-in-inverters-inverter-inverter-initial-in-initial-inverter-initial-in-initial-
 - SolarView Compact Exploits in Japan (2024) Hackers accessed publicly exposed solar data loggers, stealing sensitive financial data and threatening system integrity, <a href="https://www.fonscout.com/blog/the-security-risks-of-interget-exposed-solar-own-switchers/thres/deservice-post-picks-of-interget-exposed-solar-own-switchers/thres/deservice-post-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-of-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers/thres/deservice-picks-on-interget-exposed-solar-own-switchers-picks-on-interget-exposed-solar-own

12





16

18

13

15

2025 - Detection of cyber attacks in electric vehicle charging systems using a remaining useful life generative adversarial network https://www.nature.com/articles/s41598-025-92895-9
Last year saw a 39% increase in the number of cyber-attacks against the automotive and smart mobility ecosystem and products. Thus, a total of 409 incidents were recorded in 2024.

These incidents prove:

• EVs and chargers are networked cyber-physical systems.

2015 - Security Short Take: Hackers remotely take control of Jeep, https://www.csoonline.com/article/552175/hackers-remotely-take-control-of-jeep.html

third-party apps https://edition.cnn.com/2022/02/02/cars/tesla-teen-hack

2021 - Tesla Hackers demonstrated remote control over Tesla features via vulnerabilities in

 $\bullet \;\;$ Attacks can disrupt the energy grid and user privacy.

Security is crucial for safe FV adoption

Documented Cyber Incidents in EV Infrastructure

Have there been cybersecurity incidents involving EVs so far? Unfortunately, YES.

17

Examples:

THANK YOU

"Security is a process, not a product." – Bruce Schneier, 2000.

Bruce Schneier is an American cryptographer, computer security professional, privacy specialist, and writer.

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Quality Assurance and Evaluation

Mimoza Ibrani

TU Sofia, September 2025

2

1

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans

ber: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Work package WP7 - Quality assurance and evaluation

Start Month 1 End Month 36

- Developing the Project Quality Plan
 Conducting evaluation forms about the activities and feedback analysis
 Developing Quality Assurance policies for the common IoT-ECO hub and teaching materials

All project-planned work package activities have been completed, and the objectives have been successfully achieved.

3

5

Event Quality Assessment Reports

Yearly Quality Report I

Yearly Quality Report II

Yearly Quality Report III

IoT pilot course evaluations

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Project Quality Board

Peer review for IoT courses ToR for External Quality Evaluator External Evaluation Quality Midterm Report External Evaluation Final Quality Report Deliverable assessment and approval by PO

Project Quality Plan

4

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans

Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Project Quality Assurance Plan

Quality management roles, tasks and mechanisms Project Management Board and Project Quality Board Roles of project coordinator, partners, task and work package leader External quality evaluation

Quality assurance of project expectations
Quality of project tocument-based deliverables
Quality of events
Quality de vertes
Quality Assurance policies for the IoT-ECO hub and teaching materials
Yearly quality report

Potential risks and mitigation measures

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Event Quality Assessment Reports

- For each project event, quality evaluation forms were distributed to participants to gather their feedback and
- The response rate was satisfactory
- Event Quality Assessment Reports were prepared, shared, and discussed among project partners and structures
- · The results of the quality surveys served as valuable inputs for the Yearly Quality Reports and for tracking the

Very clear and useful

Great expertentian are offered from both sides and different persections are shared amount students and teachers

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

Yearly Quality Reports I,II,III

Yearly Quality Report I and II are prepared, approved as deliverables and shared with external quality

Yearly Quality Report III is almost finalized and will be submitted on time

Quality evaluation per work package deliverables with recommendations for improvements

Impact of project activities at the institutional, national, and regional levels


 $Recommendations for \, improvements$

7

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans

External Quality Evaluation

The External Quality Evaluator was contracted following a public call, in accordance with the project's Terms of Reference

 $The \ Midterm\ External\ Quality\ Report\ (covering\ months\ M1-M18)\ was\ delivered\ and\ shared\ with\ the\ consortium.$

The Final External Quality Report is expected towards the end of the project

 $Most\ project\ deliverables\ (25)\ have\ been\ assessed\ and\ approved\ by\ the\ EU\ Project\ Officer,\ while\ a\ few\ (5)\ deliverables\ were\ improved\ based\ on\ given\ recommendations$

IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAN"\2

IoT Hub and pilot courses

Course materials are prepared as per the guidelines

Peer review form for developed materials Student feedbacks for pilot courses are received

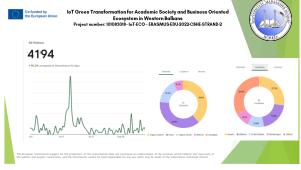
Student thesis, research projects and prototypes: quality as per institutional guidelines and framework

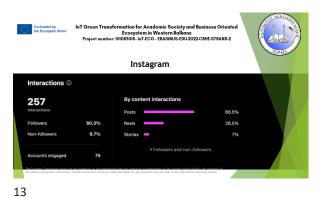
8

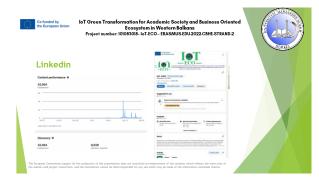
IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2

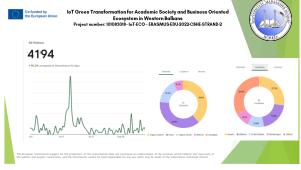
Thank you for your attention!

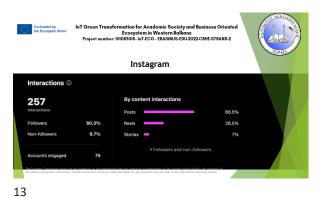
9

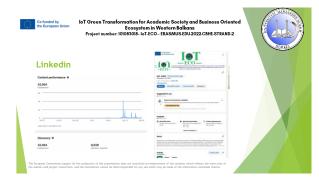












IoT Green Transformation for Academic Society and Business Oriented Ecosystem in Western Balkans Project number: 101083018 - IoT-ECO - ERASMUS-EDU-2022-CBHE-STRAND-2 UNIVERSITY OF PATRAS Presentation of the IoT-ECO Hub University of Patras Team: Kostas Berberidis
 Christos Mavrokefalidis
 Periklis Theodoropoulos
 Evangelos Georgatos Technical University of Sofia 27 September 2025

Outline ▶ General concept of the IoT-ECO hub Structure of the educational part ▶ Services to the students ► Administration and guides ▶ Highlights

1

3

5

General concept of the IoT-ECO hub (1/2)

- ▶ The general concept for the hub relies on the principles of modularity to allow each partner to develop and deploy their respective courses as they see fit.
- ▶ The IoT-ECO hub consists of the educational and experimental parts.
- In the educational part, the users will have access to the educational content produced in the frame of the IoT-ECO project.
 - ▶ Centralized, deployed at the premises of UBT.
- ▶ In the experimental part, the users will have access to the Azurebased IoT solutions provided by the IoT-ECO partners.
 - ▶ Decentralized, provided via the partners that develop the digital twins
- ► These choices made for a sustainable IoT-ECO hub solution, remaining, operational after the completion of the project

4

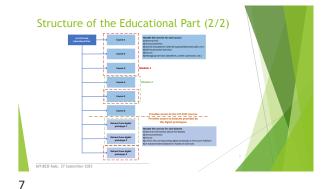
General concept of the IoT-ECO hub (2/2) Educational Part Experimental Part IoT-Hub

Structure of the Educational Part (1/2)

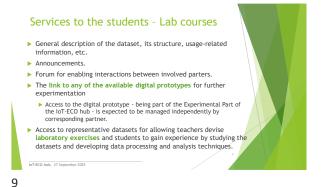
- ▶ The structure of the educational part aims at:

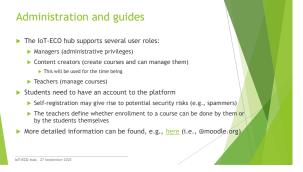
 - Ine structure of the educational part aims at:

 Accommodate several courses (it has been discussed that 6 courses will be created in the frame of loT-Hub).

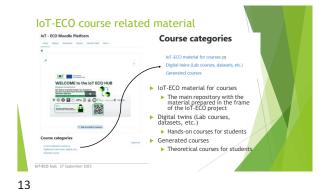

 For each digital twin developed within loT-Hub, there will be also a laboratory course, providing a representative dataset as well as links to the collection and analysis depending on their interests.

 Access to students will be granted by teachers in a per course/dataset astendard. This way, each teacher will have the flexibility to allow a student to attend and use a specific number of courses and datasets, thus, defining a module.

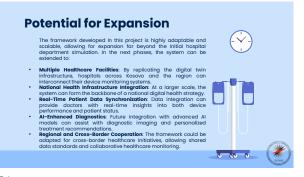

 - » A module is defined as a collection of courses/datasets that cover a particular thematic area. For example, a module on "Signal processing over "Statistical Signal Processing" and "Distributed Estimation & Learning over an IoT network." plus any of the available datasets for supporting laboratory exercises.


loT-ECO hub, 27 September 2025

6



Highlights of the IoT-ECO hub ▶ Flexible educational platform based on Moodle ► Contains material for creating new courses and laboratories in the general area of IoT and green transformation ▶ The digital twins provide a rich playground for students as well as seasoned researchers The IoT-ECO material for courses can be utilized by professors and adapted to the specific requirements of **new** courses


16

17

21 22

